Sec61β controls sensitivity to platinum-containing chemotherapeutic agents through modulation of the copper-transporting ATPase ATP7A.
نویسندگان
چکیده
The Sec61 protein translocon is a multimeric complex that transports proteins across lipid bilayers. We discovered that the Sec61β subunit modulates cellular sensitivity to chemotherapeutic agents, particularly the platinum drugs. To investigate the mechanism, expression of Sec61β was constitutively knocked down in 2008 ovarian cancer cells. Sec61β knockdown (KD) resulted in 8-, 16.8-, and 9-fold resistance to cisplatin (cDDP), carboplatin, and oxaliplatin, respectively. Sec61β KD reduced the cellular accumulation of cDDP to 67% of that in parental cells. Baseline copper levels, copper uptake, and copper cytotoxicity were also reduced. Because copper transporters and chaperones regulate platinum drug accumulation and efflux, their expression in 2008 Sec61β-KD cells was analyzed; ATP7A was found to be 2- to 3-fold overexpressed, whereas there was no change in ATP7B, ATOX1, CTR1, or CTR2 levels. Cells lacking ATP7A did not exhibit increased cDDP resistance upon knockdown of Sec61β. Sec61β-KD cells also exhibited altered ATP7A cellular distribution. We conclude that Sec61β modulates the cytotoxicity of many chemotherapeutic agents, with the largest effect being on the platinum drugs. This modulation occurs through effects of Sec61β on the expression and distribution of ATP7A, which was shown previously to control platinum drug sequestration and cytotoxicity.
منابع مشابه
A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity.
Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. ...
متن کاملBiochemical characterization of P-type copper ATPases
Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of A...
متن کاملRole of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B.
The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their res...
متن کاملPurification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A).
The MNK (Menkes disease protein; ATP7A) is a major copper- transporting P-type ATPase involved in the delivery of copper to cuproenzymes in the secretory pathway and the efflux of excess copper from extrahepatic tissues. Mutations in the MNK (ATP7A) gene result in Menkes disease, a fatal neurodegenerative copper deficiency disorder. Currently, detailed biochemical and biophysical analyses of MN...
متن کاملIntracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b-/- kidney.
Kidneys regulate their copper content more effectively than many other organs in diseases of copper deficiency or excess. We demonstrate that two copper-transporting ATPases, ATP7A and ATP7B, contribute to this regulation. ATP7A is expressed, to a variable degree, throughout the kidney and shows age-dependent intracellular localization. In 2-wk-old mice, ATP7A is located in the vicinity of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 82 3 شماره
صفحات -
تاریخ انتشار 2012